1. Forme die Formel so um, daß die Größe k ausgedrückt werden kann!

(a)
$$4k - \frac{2}{b} = f$$

(b)
$$3\sqrt{k} = \frac{b}{3} - f$$

(c)
$$\frac{1}{k} - \frac{1}{f} = b$$

(a)
$$4k - \frac{2}{b} = f$$
 (b) $3\sqrt{k} = \frac{b}{3} - f$ (c) $\frac{1}{k} - \frac{1}{f} = b$ (d) $3f + \frac{k^2}{4} = \frac{b}{2}$

2. Löse die Gleichungen:

(a)
$$\frac{4}{6x-9} - \frac{7}{24x} = \frac{3}{8x-16}$$

(a)
$$\frac{4}{6x-9} - \frac{7}{24x} = \frac{3}{8x-16}$$
 (b) $\frac{3x+8}{8} - \frac{5-x}{3} + 2 = \frac{3x+2}{4}$

- 3. Löse die Polynomdivision: $(3k^3 5k 6 + 8k^2)$: (3k + 2) =
- 4. Vereinfache so weit wie möglich: (Was muß man ausschließen?)

(a)
$$\frac{-3x^3+9x^2}{x^3-6x^2+9x} \cdot \frac{x^5-9x^3}{6x^2} =$$

(b)
$$\frac{\frac{8a^2b^3}{9c}}{\left(\frac{4b^5}{3a^7}\right)^2} =$$

- 5. Von einer regelmäßigen quadratischen Pyramide kennt man die Diagonale der Grundfläche d=10 cm und die Seitenkante s=13 cm. Gesucht: Skizze, O, V
- 6. Von einem rechtwinkeligen Dreieck kennt man die Kathete a=67.5 cm und den Flächeninhalt $A = 1240 \text{ cm}^2$. Berechne die fehlenden Seiten, die Hypotenusenabschnitte, sowie die Höhe!
- 7. Eine 1,2 m lange Stahlschiene hat als Querschnitt ein gleichschenkeliges Trapez $A = 20,16 \text{ cm}^2$, a = 75 mm, $h_T = 3,2 \text{ cm}$]. Berechne die Diagonale im Trapez sowie Volumen, Masse ($\rho = 7.8 \text{ kg/dm}^3$) und Oberfläche der Stahlschiene.
- 8. Zeichne:

$$f_1$$
: $y = \frac{1}{3}x$ f_2 : $y = -2x + 3$ f_3 : $y = -4$ f_4 : $y = x - 2$

Bei welcher handelt es sich um eine homogene lineare Funktion? Gib die Gleichung einer zu f_2 parallelen Geraden an, die durch R(2|3) verläuft. Untersuche rechnerisch und zeichnerisch, ob P(-1|0) auf f_2 liegt. Gib die Koordinaten eines Punktes an, der auf f_4 liegt.