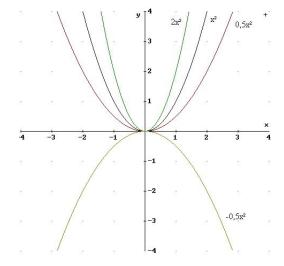
Funktionen vom Typ $y=ax^2$, $y=\frac{c}{x^2}$, $y=ax^3$, $y=\frac{c}{x^3}$


Die Funktion $y = ax^2$ (PARABEL)

 $y = x^2$ (Grundparabel)

$$y = \frac{1}{2}x^2$$

$$y = 2x^2$$

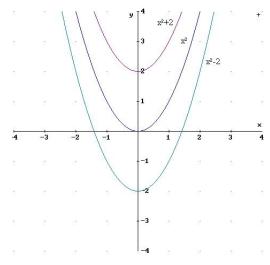
$$y = -\frac{1}{2}x^2$$

Merke:

 $a < 1 \dots$ Grundparabel flacher

 $a > 1 \dots$ Grundparabel steiler

 $a < 0 \dots$ Parabel unten offen


 $a>0\dots$ Parabel oben offen

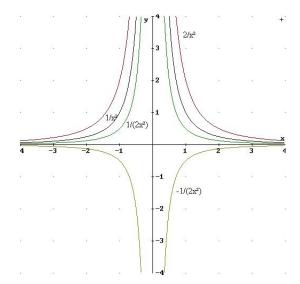
Die Funktion $y = ax^2 + c$

$$y = x^2$$
 (Grundparabel)
 $y = x^2 + 2$
 $y = x^2 - 2$

$$y = x^2 + 2$$

$$y = x^2 - 2$$

Untersuche:


Unicisaciic.			
	$y = x^2$	$y = x^2 + 2$	$y = x^2 - 2$
Nullstelle	N(0 0)	keine	$N_1(-\sqrt{2} 0), N_2(\sqrt{2} 0)$
Scheitel	S(0 0)	S(0 2)	S(0 -2)
Symmetrieachsen	y-Achse	y-Achse	y-Achse
Monotonie	$x \le 0$ streng monoton fallend; $x \ge 0$ streng monoton steigend		
Wertemenge	\mathbb{R}_0^+	$[2;\infty[$	$[-2;\infty[$

Die Funktion $y = \frac{c}{x^2}$ (HYPERBEL)

$$\begin{array}{l} y = \frac{1}{x^2} \\ y = \frac{2}{x^2} \\ y = \frac{0.5}{x^2} = \frac{1}{2x^2} \\ y = -\frac{1}{2x^2} \end{array}$$

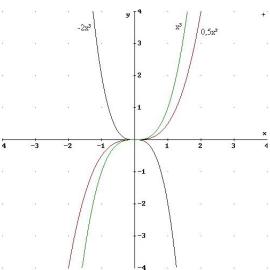
- 1. symmetrisch zur y-Achse
- 2. y-Achse ist Asymptote
- 3. an x = 0 nicht definiert \Rightarrow Polstelle (= Unendlichkeitsstelle)

Die Funktion $y = ax^3$

$$y = x^3$$

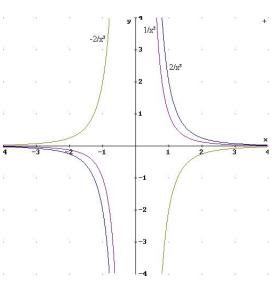
$$y = \frac{1}{2}x^3$$

$$y = -2x^3$$


Die Funktion $y=ax^3$ ist auf ganz $\mathbb R$ definiert und für a>0 streng monoton steigend bzw. für a<0 streng monoton fallend. Zum Ursprung ist sie zentrisch symmetrisch.

Die Funktion $y = \frac{c}{x^3}$

$$y = \frac{1}{x^3}$$


$$y = \frac{2}{x^3}$$

$$y = -\frac{2}{x^3}$$

Merke:

- 1. $\mathbf{D} = \mathbb{R} \setminus \{0\}$
- 2. an x = 0 nicht definiert \Rightarrow Polstelle
- 3. zum Ursprung zentrisch symmetrisch

